“Owning the Weather”: the US Air Force 2025 document

airforce

Concrete proof that the US Airforce has been engaged in weather modification since the early 1990s.

In 2025, US aerospace forces can “own the weather” by capitalizing on emerging technologies and focusing development of those technologies to war-fighting applications. Such a capability offers the war fighter tools to shape the battlespace in ways never before possible. It provides opportunities to impact operations across the full spectrum of conflict and is pertinent to all possible futures. The purpose of this paper is to outline a strategy for the use of a future weather-modification system to achieve military objectives rather than to provide a detailed technical road map.

A high-risk, high-reward endeavor, weather-modification offers a dilemma not unlike the splitting of the atom. While some segments of society will always be reluctant to examine controversial issues such as weather-modification, the tremendous military capabilities that could result from this field are ignored at our own peril.

Current technologies that will mature over the next 30 years will offer anyone who has the necessary resources the ability to modify weather patterns and their corresponding effects, at least on the local scale. Current demographic, economic, and environmental trends will create global stresses that provide the impetus necessary for many countries or groups to turn this weather-modification ability into a capability. In the United States, weather-modification will likely become a part of national security policy with both domestic and international applications.

airforce1

Our government will pursue such a policy, depending on its interests, at various levels. These levels could include unilateral actions, participation in a security framework such as NATO, membership in an international organization such as the UN, or participation in a coalition. Assuming that in 2025 our national security strategy includes weather-modification, its use in our national military strategy will naturally follow. Besides the significant benefits an operational capability
would provide, another motivation to pursue weather-modification is to deter and counter potential adversaries.

From chapter 2:

People have always wanted to be able to do something about the weather. In the US, as early as 1839, newspaper archives tell of people with serious and creative ideas on how to make rain.2 In 1957, the president’s advisory committee on weather control explicitly recognized the military potential of weathermodification, warning in their report that it could become a more important weapon than the atom bomb.

From chapter 4: This is particularly relevant to Chemtrails and cloud seeding:

Can this type of precipitation enhancement technology have military applications? Yes, if the right conditions exist. For example, if we are fortunate enough to have a fairly large body of water available upwind from the targeted battlefield, carbon dust could be placed in the atmosphere over that water. Assuming the dynamics are supportive in the atmosphere, the rising saturated air will eventually form clouds and rainshowers downwind over the land.5 While the likelihood of having a body of water located upwind of the battlefield is unpredictable, the technology could prove enormously useful under the right conditions. Only further experimentation will determine to what degree precipitation enhancement can be controlled.
If precipitation enhancement techniques are successfully developed and the right natural conditions also exist, we must also be able to disperse carbon dust into the desired location.

Transporting it in a completely controlled, safe, cost-effective, and reliable manner requires innovation. Numerous dispersal techniqueshave already been studied, but the most convenient, safe, and cost-effective method discussed is the use of afterburner-type jet engines to generate carbon particles while flying through the targeted air. This method is based on injection of liquid hydrocarbon fuel into the afterburner’s combustion gases. This direct generation method was found to be more desirable than another plausible method (i.e., the transport of large quantities of previously produced and properly sized carbon dust to the desired altitude).

The carbon dust study demonstrated that small-scale precipitation enhancement is possible and has been successfully verified under certain atmospheric conditions. Since the study was conducted, no known military applications of this technology have been realized. However, we can postulate how this technology might be used in the future by examining some of the delivery platforms conceivably available for effective dispersal of carbon dust or other effective modification agents in the year 2025.

About these ads

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s